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Abstract

The aim of this lecture is to provide a short introduction to compressive sensing (CS) techniques and
its application to radar systems and networks. In spite of the fact that CS theory is a very young math-
ematical framework for solving sparsely populated linear systems (2004, [3]), it currently represents
a revolution in signal processing and sensor systems. The reason for this can be seen in the potential
of CS techniques in reducing the number of required samples and/or of the number of sensors with-
out degrading the performance of the system. A few properties of CS in the area of radar and fusing
data in sensor networks will be discussed and several examples will be given throughout this paper to
prove the presented concept.

1.0 INTRODUCTION

Surveillance and reconnaissance systems using radar sensors offer several advantages compared to
optical systems. For instance radar sensors operate independently of day light, and they are not
influenced by clouds, fog, and dust. Also electromagnetic waves can penetrate non metallic material
and can therefore be used to detect objects concealed in a forest [1]. Another big advantage of radar
is that the range resolution does not decrease with the distance between sensor and the scene and due
to the coherent signal processing more information can be extracted from the received echo.
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Many state of the art radar systems operate with large frequency bandwidths and use phased array
techniques to achieve a highly flexible and adaptable surveillance system. Due to the large instan-
taneous bandwidth and huge number of receive elements a lot of data is generated and has to be
processed. However typical radar scenes consist only of a small number of existing targets. Not with-
standing this, the traditional methods need to process all data to estimate range and Doppler for a few
targets.

Surveillance systems where transmit and receive nodes are distributed over an area, sometimes called
multiple-input and multiple-output (MIMO) sensor systems, exhibit several advantages compared to
single sensor systems. For instance, due to the joint signal processing of a radar network a higher
spatial resolution can be achieved. Likewise target detection and Doppler estimation are improved
and the handling of multiple targets is enhanced. This only became possible in recent years by the
technological improvement of high-speed links, which are essential for transferring data between
the nodes and the central processing stage via cable and/or wireless connections. In addition to
that digital modulation techniques have opened the realization of distributed radar networks. There
is no further need for a surveillance channel as an ideal reference signal can be created from the
distorted received signal, which consists of a mix of direct signal, multi-path signals, and the echo in
the digital domain. For passive and multistatic radar systems special tracking techniques have been
developed to distinguish between targets and ghost objects [2]. These techniques rely on a central
signal processing scheme for detecting targets and estimating their parameters and therefore high-
speed links are essential to establish these techniques.

Many attempts have been made to reduce the required data rate for these systems. With the beginning
of the 21th century the new sensing/sampling paradigm, called compressive sensing (CS), has been
developed which overcomes the Nyquist-Shannon sampling theorem and helps in the area of wide
band systems and sensor fusion. The CS theory claims that it can recover specific signals from far
fewer samples than required by the traditional methods. To achieve this CS relies on two assumptions:
the reconstructed signal is sparse in some orthonormal basis (e.g. wavelet, Fourier) or tight frame
(e.g. curvelet, Gabor) and the columns of the sensing matrix are uncorrelated [3].

The focus of this paper is to give a short overview of compressive sensing applied to high resolution
radar and to data fusion in distributed radar networks.

2.0 NOTATIONS AND DEFINIITONS

Throughout this paper boldface variables represent vectors and matrices while non-boldface variables
represent functions with a continuous domain. For a natural number N the set [N ] is defined by
[N ] := {1, . . . , N}. The cardinality of a set A is denoted by card(A) and is a measure of the
number of elements of A. For a real number p ≥ 1 the `p-norm or p-norm of a vector x ∈ CN is
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defined by:

‖x‖p =

(
N∑
n=1

|xn|p
)1/p

, 0 < p <∞ (1)

(2)

The `∞ or maximum norm is the limit of the `p norms for p → ∞ and is describes the greatest
distance between two vectors along any coordinate dimension and is equal to:

‖x‖∞ = max{|x1|, . . . , |xn|} (3)

The Euclidean norm, or the length of vector x, is according to the above definition (1) the `2-norm
and the `1-norm is the norm which corresponds to the so called Manhattan distance.

For p → 0 we use the `0-”norm” definition from [4] as a count of the non-zero elements in x and is
equal to card(n ∈ [N ] : xn 6= 0).

If x1, . . . , xN are columns vectors then vec(x1, . . . , xN ) := (x1
T , . . . , xN

T )T denotes a column
vector built by stacking all xn, n ∈ [N ]. The n-th element of vector x is denoted by xn.

For a given matrix A, AT , AH , and Tr(A) denote the transpose, conjugate transpose, and trace. The
element in the i-th row and j-th column of A is denoted by aij , and an stands for the n-th column of
A and am for the m-th row, respectively.

The Hadamard product, also known as Schur product or element-wise product, of two matrices C =

A ◦B with identical dimensions yield a matrix with the same dimension where each element cij is a
product of the elements aij and bij of the original matrices.

3.0 BASIC IDEA

Compressive sensing is a recently developed mathematical framework [3]–[7] with the primary pur-
pose of reconstructing the sparse signal s from a linear measurement with noise y = As + n, as it
will be always the case for real applications. The vector s ∈ CN×1 describes the sparsely populated
scene and the measurements obtained by a linear sensor are collected in the M -dimensional vector y.
The sensing matrix A is a M ×N dimensional matrix and defines how each element from the scene
si contributes to the measurement y.

CS expects that M < N , which prevents that s can be reconstructed by simply inverting y = As

as this leads to a underdetermined system of linear equations. If the sparse signal s of dimension N
has K-sparse representation (‖s‖0 = K � N ) and is compressible, which means that the vector
coefficients are composed of a few large coefficients and other coefficients with small value (‖s −
s(K)‖ decreases quickly to zero with growing K), CS is capable of recovering the sparse signal
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s exactly with a very high probability from fewmeasurements by solving a convex `1 optimization
problem of the form:

min ‖s‖1, subject to ‖y − As‖2 < σ . (4)

Well known are the Basis Pursuit Denoising (BPD) [8], the Orthogonal Matching Pursuit (OMP) [9],
the Compressive Sampling Matched Pursuit (CoSaMP) [10], and the SPGL1 [11] algorithms to solve
the above equation.

Owing to these attractive properties CS found a lot of attraction in the field of radar with its sparse
scenes over the past years. One of the earliest papers on CS applied to radar is from Baraniuk [12].
Nowadays there are numerous research projects going on to further investigate compressive sensing
applied to high resolution radar, interferometric SAR, ISAR, Moving Target Indication (MTI), and
DOA estimation, for instance.

It has been shown that CS provides a guaranteed stable solution of the reconstructed sparse signal
s for a sensing matrix A if it satisfies the following three properties: null space property, restricted
isometry property, and the matrix column coherence.

4.0 PROPERTIES OF THE SENSINGS MATRIX

To solve the underdetermined equation system with CS techniques two questions have to be solved.
The first one deals with the sensing matrix A and its design to preserve the information of the mea-
surements in a sparse signal s. The other one is how the sparse signal s can be recovered from the
measurements y. If signal s is sparse or compressible, a sensing matrix A with dimension M � N

can be designed in such a way that CS reconstruction algorithms can recover the original signal s
accurately and efficiently.

To ensure that CS reconstruction algorithms lead to a perfect solution we have to take care designing
the sensing matrix A. The following subsections consider a number of desirable properties that the
sensing matrix A should have.

4.1 Null space property (NSP)

For an exactly sparse vector s the spark-function of the sensing matrix A, which delivers the smallest
number of linearly dependent columns in A, provides a complete characterization if the recovery is
possible [13].

spark(A) = min
s6=0
‖s‖0 subjet to As = 0 (5)

But for approximately sparse signals a more restrictive conditions has to be introduced on the null
space of A [14], [15]. It must be ensured that the null space N (A) = s : As = 0 does not contain
column vectors that are too compressible moreover to sparse column vectors.
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Consider that s0 is the solution of y = As, then any solution s′ of this equation can be written as
s′ = s0 + v with v ∈ kerA and

N (A) = Null(A) = ker(A) =
{
v ∈ CN ,Av = 0

}
. (6)

If ∆ : RM → RN represent the selected recovery method the matrix A satisfies the null space
property (NSP) of order K if there exists a constant C > 0 such that [16]:

‖∆(As)− s‖2 ≤ C
min ‖s− ŝ‖1√

K
(7)

for all s, with ŝ the approximation of the signal s.

The NSP describes that the column vectors in the null space of A should not be too concentrated
on a small subset of indices. If the sensing matrix A fulfils the NSP it guarantees exact recovery of
all possible K-sparse signals and it ensures a degree of robustness to non-sparse signals that directly
depends on how well the signals are approximated by K-sparse vectors.

As it is difficult to determine the NSP the restricted isometry property, as introduced by [17], has
become a more popular tool in compressive sensing theory.

4.2 Restricted isometry property

The NSP is necessary and sufficient for establishing guarantees of Eqn. (7), but only for the noise-free
case. When measurements contain noise or are corrupted by some error as caused, for example by
quantization or non-linear devices, a stronger constraint has to be chosen. Candès and Tao introduced
in [17] the following isometry condition on matrix A and established its important role in CS.

An M × N matrix A satisfies the restricted isometry property (RIP) of order K if there exists a
δK ∈ (0, 1) such that [18]-[22]:

(1− δK)‖s‖22 ≤ ‖As‖22 ≤ (1 + δK)‖s‖22 (8)

for all K-sparse vectors s ∈ CN . When δK is less than 1 this RIP imply that all of the submatrices
of A with K-columns are well-conditioned and close to an isometry. If δK � 1 then there is a large
probability to reconstruct the K sparse signal s with the sensing matrix A.

4.3 Coherence

The spark, NSP, and RIP criterion all provides a guarantee for the recovery of a K-sparse signal,
but any of these properties are hard to verify for a general matrix A as

(
n
k

)
submatrices has to be

considered during the computation. In many cases it is preferred to determine a characteristic of A
that is much easier to compute and yields more practical recovery guarantees. Such a property is the
coherence or mutual coherence of matrix A [13]-[15]. It is defined as the maximum absolute value of
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the cross-correlations between the N columns of matrix A ∈ CM×N . This matrix coherence should
not be confused with the coherence of the sensor system. Formally, let a1, . . . , aN be the columns
of the matrix A. The coherence of A is then defined as:

µ(A) = max
1≤i6=j≤N

|< a∗i ,aj > |
‖ai‖2 ‖aj‖2

(9)

and |< , > | is the product between any two columns ai,aj with 1 ≤ i 6= j ≤ N . It can be shown
that the coherence µ(A) is always in the range of µ(A) ∈

[√
N−M
M(N−1) , 1

]
. The lower bound is also

known as the Welch bound and is for N �M approximately µ(A) = 1/
√
M [23]-[24].

In the case of µ(A) = 1 there are at least two columns aligned. This represents the worst case
scenario: maximum coherence. The other extreme, when µ(A) =

√
(M −N)/N(M − 1) the best

scenario exists: maximal incoherence.

For a good convergence of the recovery algorithms the coherence µ of the columns of the sensing
matrix µ(A) should be < 1.

5.0 RADAR APPLICATIONS

The remaining sections will discuss several compressive sensing applications in the field of radar and
in the area of data fusion for distributed sensor networks.

For high-resolution radar CS is usable for pulse compression in the time or frequency domain. It will
be shown that this new technique allows reducing the number of data without decreasing the perfor-
mance of the radar. Another interesting application can be found in the reconstruction of corrupted
signals. The performance of CS in the area of spatial sparsity, like antenna arrays for locating signal
sources by directional-of-arrival estimation, will also be shown.

One further application discussed in this paper is to use compressive sensing to fuse information
from a distributed radar network, which is also called multiple-input multiple-output (MIMO) radar
system. If the scene observed by the sensors can be described by a simple linear target state vector
then this also works with very diverse sensors as input nodes for CS. It’s always a question how to
setup the sensing matrix A so all information from the sensors can be described by the single state
vector. Constructing the sensing matrix A, one has always to keep in mind that it has to fulfill the
three mentioned properties NRP, RIP, and coherency to guarantee the reconstruction of the sparse
vector s from the measurement y

5.1 Pulse compression

The traditional way of how radar works is that it emits a frequency modulated pulse and the reflected
signal is received, down-converted, digitized before further signal processing algorithms extract the
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information from the almost continuous data stream. For high-resolution chirp radars and their wide
frequency bandwidth the pulse compression can be implemented in an analog way, which gets along
with a low-rate analog-to-digital converter (ADC), or digital by sampling the whole signal bandwidth
with high-speed ADC followed by a fast data storage unit and realizing the matched filter in the digital
domain. Due to this, the design of high resolution radar systems is limited by the required high-speed
components which are in many cases beyond the state-of-art of what is currently technologically
possible or the technique is too expensive.

On the receiver side, compressive sensing can help to overcome data-rate problems as pulse compres-
sion is performed by using just a few measurement samples, which avoids the need to continuously
sample the received signal and store it. In contrast to the matched filter approach, CS reconstructs
the compressed signal from only a few measurements by solving an inverse problem either through a
linear program or a greedy pursuit [12]. This changes the radar design dramatically as the demanded
ADC bandwidth is reduced and the traditional matched filter processing is replaced by CS as the data
rate from the sparse scene with some targets is lot less than the Nyquist-Shannon rate.

5.1.1 Time domain

A radar illuminates the surveillance area with the signal xt(t). The received signal y is a sum of the
reflected signal from target m = 1, . . . ,M with a radar cross section αm at a distance rm, which
corresponding to a time-delay of τm = 2rm/c. The receiver samples y at t = t(0), . . . , t(L). For the
time t(l) this is:

yl =
M∑
m=1

αm xt(tl − τm) (10)

(11)

The measurement vector y can therefore described by:

y = [y1, . . . , yL]T = As . (12)

The target state vector contains all possible target RCS s = [α1, . . . , αM ]T ∈ CM×1 and the sensing
matrix A:

A = vec(x(τ0), . . . , x(τM )) (13)

with x(τm) = [xt(t0 − τm), . . . , xt(tL − τm)]T a time-delayed version of the transmit signal.

Fig. 1 shows the result from a radar transmitting a frequency modulated pulse with a bandwidth of
147 MHz. The sample rate is twice the bandwidth. The top diagram shows the given range profile
and the second diagram the result from the matched filter with about 3,000 sampled data. The same
range profile can be obtained by CS, as depicted in the third top diagram. However, CS is still able to
recover the range profile even when the Nyquist-Shannon criteria is not fulfilled by taking only every
60th sample from the measurement, as depicted in the bottom diagram. In contrast the matched filter
is not able to determine the right range profile.
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5.3 High resolution monostatic Radar

In air surveillance radar the scene is typically sparse populated by only a few targets and is normally
characterized by a range/Doppler plane, which helps to distinguish between moving objects and static
clutter. If target ζk is located at a distance rk and has a radial velocity which corresponds to a Doppler
frequency of fD(k) the down-converted received signal can be described by:

yk(t) = αk x(t− τk(t)) e−j2π(f0−fD(k))τ(t) e−j2πfD(k)t , (20)

with τ(t) = 2rk(t)/c0 the time delay, c0 the speed of propagation, and f0 the center frequency of the
transmitted signal. The reflection coefficient of the target is denoted by αk and is a complex value. If
the static phase shifts are incorporated into the reflection coefficient and if the target radial speed is
vr � c0 the above equation can be rewritten as:

yk(t) = αk x(t− τk) e−j2πfD(k)t . (21)

In the case that more than one target is present the received signal is the sum over all echoes:

y(t) =
∑
k

αk x(t− τk) e−j2πfD(k)t . (22)

The receiver samples and digitizes this signal at time t = t0, t1, . . . , t(L−1). Therefore the measure-
ment vector is y = [y(t0), . . . , y(tL−1)]

T with L-samples.

To transform Eqn. (22) to y = As the sensing matrix can easily be constructed by combining time-
delay and Doppler matrix in the following way. The time-delay matrix T consists of staggered vectors
of the transmit signal with time-delays τ1 , . . . , τM (T ∈ CL×M ) and, hence, is described by:

T = vec(x(τ0), x(τ1), . . . , x(τM )) with (23)

x(τm) = [x(t0 − τm), . . . , x(t(L−1) − τm)]T

The Doppler-shift matrix D ∈ CL×M is the staggered version of the Doppler-vector:

d(k) =
[
ej2πfD(k)t0 , . . . , ej2πfD(k)t(L−1)

]T
(24)

D = vec(d(1) ,d(2) , . . . , d(M)) , (25)

with fD(k) ∈ [−fDmax, fDmax] the search interval for the Doppler-frequency.

Combining time-delay matrix and Doppler matrix in the following way:

A = vec(T ◦D0, T ◦D1, . . .T ◦DN ) (26)

enables us to construct the sensing matrix A, which describes the relation between the target state
vector s = [α(τ1, fD(1)) , . . . , α(τM , fD(N))]T ∈ CMN×1 and the measurement y.

y = As (27)

With the knowledge that the scene is sparse this underdetermined linear equation system can be solved
using CS techniques:

min
s
||s||1 subject to ‖As− y‖2 ≤ σ (28)
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5.3.1 Example

In the following simulation a monostatic radar emits a modulated pulse with a pulse length of τp =

1.5 ms and a bandwidth of 20 MHz. Therefore the range resolution is ∆r = c0/(2B) = 7.5 m and
the Doppler resolution is ∆fD = 1/τp = 666.6 Hz. As the center frequency is 2.45 GHz the radial
velocity resolution is ∆vr = λ∆fD/2 = 40.8 m/s

For the simulation additive white Gaussian noise (AWGN) was superimposed to the received sig-
nal. Fig. 6 shows the result for a signal-to-noise ratio (SNR) of 40 dB. The left diagram shows the

Fig. 6: Simulation result with 3 targets and a signal-noise-ratio of 40 dB. Left diagram shows the
range/velocity-plane reconstructed by the matched filter approach and right diagram shows the result
obtained by CS.

range/velocity-plane one obtains using the traditional matched filter approach and the result from the
compressive sensing approach is depicted in the right diagram. Definitely CS is able to determine
range and velocity with high accuracy. Reducing the number of samples of the received signal by a
factor of 64 does not change this behaviour dramatically for the noise-free case, as shown already in
section 5.1.

Fig. 7 illustrates that compressive sensing starts to suffer in the presence of noise. For this example
the SNR was 5 dB with a detection level of 0.1. Due to this, several faint false targets appeared,
however, the main target can be clearly identified by CS.

5.4 Sensor fusion by CS techniques

In the remaining sections we will focus on the compressive sensing approach of fusing data from a
distributed sensor network. This can be in the simplest version a multiple-input and multiple-output
(MIMO) system with homogeneous sensors, like radar/sonar systems. In such networks transmit and
receive nodes can be co-located or distributed over an area. There exist several publications which
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advantage of extracting information from less data than required by the Nyquist-Shannon criterium
without decreasing the performance of the overall system. Investigations have shown that the detec-
tion performance depends on the knowledge of the involved transmit and receive nodes. If these can
be modeled by a sensing matrix the number of samples which has to be transmitted from the receive
nodes to a central processing stage can be dramatically reduced by compressive sensing techniques.

One should always keep in mind that compressive sensing is a discrete theory which assumes that all
targets are located exactly on grid points of the discretization grid, which is determined by the range
resolution of the system. In a distributed sensor network, built-up by mono- and bistatic radars, this
is not always true.
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